

R S Foundation for Maths & Science

Malkapur

WORKSHEET- POLYNOMIALS AND FACTORISATION

Class 09 - Mathematics

1.	Write the remainder when the polynomial $f(x) = x^3 + x^2 - 3x + 2$ is divided by $x + 1$	[1]
2.	Divide $(2x^2 - x + 3)$ by $(2 - x)$ and write the quotient and the remainder.	[1]
3.	If $p(x) = 5x - 10$ is divided by x - $\sqrt{2}$, then find remainder.	[1]
4.	$p(x) = ax^2 + bx + c$. If $a + b + c = 0$, then find one of its zero.	[1]
5.	Find the remainder when $f(x) = 4x^3 - 12x^2 + 14x - 3$ is divided by $g(x) = (2x - 1)$.	[2]
6.	Find the remainder when $x^3 - ax^2 + 6x - a$ is divided by x - a.	[2]
7.	Check whether $g(x)$ is a multiple of $p(x)$ or not : $p(x) = x^3 - 5x^2 + 4x - 3$, $g(x) = x - 2$	[2]
8.	By Remainder Theorem find the remainder, when $p(x)$ is divided by $g(x)$, where $p(x) = x^3 - 3x^2 + 4x + 50$, $g(x) = x - 3$	[2]
9.	If $x + 1$ is a factor of $x^3 + a$, then write the value of a.	[1]
10.	Check whether $3x - 7$ is a factor of polynomial $6x^3 + x^2 - 26x - 25$?	[1]
11.	Using factor theorem, show that $g(x)$ is a factor of $p(x)$, when $p(x) = 2x^3 + 7x^2 - 24x - 45$, $g(x) = x - 3$.	[2]
12.	If x - 2 is a factor of polynomial, find the value of a: $x^5 - 3x^4 - ax^3 + 3ax^2 + 2ax + 4$	[2]
13.	Use factor theorem to show that $x^4 + 2x^3 - 2x^2 + 2x - 3$ is exactly divisible by (x + 3).	[2]
14.	Find the value of k for which $(x - 1)$ is a factor of $(2x^3 + 9x^2 + x + k)$.	[2]
15.	Find the zeroes of $\sqrt{3}x^2 + 10x + 7\sqrt{3}$.	[2]
16.	Determine polynomial has x - 2 a factor : $3x^2 + 6x - 24$	[2]
17.	Factorise: $8x^3 + 27y^3 + 36x^2y + 54xy^2$	[2]
18.	Factorise: $49a^2 + 70ab + 25b^2$	[2]
19.	Factorise: $2x^2 - 7x - 15$	[2]
20.	Factorise: 64m ³ - 343n ³	[2]
21.	Expand using suitable identity: $(x + 2y + 4z)^2$	[2]
22.	If a, b, c are all non-zero and a + b + c = 0, prove that $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3$.	[2]
23.	Write (2a - 3b) ³ cube in expanded form.	[2]
24.	Factorize: $8a^3 - b^3 - 4ax + 2bx$	[2]
25.	Simplify: $\frac{155 \times 155 \times 155 - 55 \times 55 \times 55}{155 \times 155 + 155 \times 55 + 55 \times 55}$	[2]
26.	Expand $(4a - 2b - 3c)^2$	[2]
27.	Write $(2x + 1)^3$ cube in expanded form.	[2]
28.	Give possible expression for the length and breadth of the rectangle, in which the area is $35y^2 + 13y - 12$	[2]